394 research outputs found

    A latent variable ranking model for content-based retrieval

    Get PDF
    34th European Conference on IR Research, ECIR 2012, Barcelona, Spain, April 1-5, 2012. ProceedingsSince their introduction, ranking SVM models [11] have become a powerful tool for training content-based retrieval systems. All we need for training a model are retrieval examples in the form of triplet constraints, i.e. examples specifying that relative to some query, a database item a should be ranked higher than database item b. These types of constraints could be obtained from feedback of users of the retrieval system. Most previous ranking models learn either a global combination of elementary similarity functions or a combination defined with respect to a single database item. Instead, we propose a “coarse to fine” ranking model where given a query we first compute a distribution over “coarse” classes and then use the linear combination that has been optimized for queries of that class. These coarse classes are hidden and need to be induced by the training algorithm. We propose a latent variable ranking model that induces both the latent classes and the weights of the linear combination for each class from ranking triplets. Our experiments over two large image datasets and a text retrieval dataset show the advantages of our model over learning a global combination as well as a combination for each test point (i.e. transductive setting). Furthermore, compared to the transductive approach our model has a clear computational advantages since it does not need to be retrained for each test query.Spanish Ministry of Science and Innovation (JCI-2009-04240)EU PASCAL2 Network of Excellence (FP7-ICT-216886

    Computing in Additive Networks with Bounded-Information Codes

    Full text link
    This paper studies the theory of the additive wireless network model, in which the received signal is abstracted as an addition of the transmitted signals. Our central observation is that the crucial challenge for computing in this model is not high contention, as assumed previously, but rather guaranteeing a bounded amount of \emph{information} in each neighborhood per round, a property that we show is achievable using a new random coding technique. Technically, we provide efficient algorithms for fundamental distributed tasks in additive networks, such as solving various symmetry breaking problems, approximating network parameters, and solving an \emph{asymmetry revealing} problem such as computing a maximal input. The key method used is a novel random coding technique that allows a node to successfully decode the received information, as long as it does not contain too many distinct values. We then design our algorithms to produce a limited amount of information in each neighborhood in order to leverage our enriched toolbox for computing in additive networks

    The Grail theorem prover: Type theory for syntax and semantics

    Full text link
    As the name suggests, type-logical grammars are a grammar formalism based on logic and type theory. From the prespective of grammar design, type-logical grammars develop the syntactic and semantic aspects of linguistic phenomena hand-in-hand, letting the desired semantics of an expression inform the syntactic type and vice versa. Prototypical examples of the successful application of type-logical grammars to the syntax-semantics interface include coordination, quantifier scope and extraction.This chapter describes the Grail theorem prover, a series of tools for designing and testing grammars in various modern type-logical grammars which functions as a tool . All tools described in this chapter are freely available

    Distributed Approximation on Power Graphs

    Full text link
    We investigate graph problems in the following setting: we are given a graph GG and we are required to solve a problem on G2G^2. While we focus mostly on exploring this theme in the distributed CONGEST model, we show new results and surprising connections to the centralized model of computation. In the CONGEST model, it is natural to expect that problems on G2G^2 would be quite difficult to solve efficiently on GG, due to congestion. However, we show that the picture is both more complicated and more interesting. Specifically, we encounter two phenomena acting in opposing directions: (i) slowdown due to congestion and (ii) speedup due to structural properties of G2G^2. We demonstrate these two phenomena via two fundamental graph problems, namely, Minimum Vertex Cover (MVC) and Minimum Dominating Set (MDS). Among our many contributions, the highlights are the following. - In the CONGEST model, we show an O(n/ϵ)O(n/\epsilon)-round (1+ϵ)(1+\epsilon)-approximation algorithm for MVC on G2G^2, while no o(n2)o(n^2)-round algorithm is known for any better-than-2 approximation for MVC on GG. - We show a centralized polynomial time 5/35/3-approximation algorithm for MVC on G2G^2, whereas a better-than-2 approximation is UGC-hard for GG. - In contrast, for MDS, in the CONGEST model, we show an Ω~(n2)\tilde{\Omega}(n^2) lower bound for a constant approximation factor for MDS on G2G^2, whereas an Ω(n2)\Omega(n^2) lower bound for MDS on GG is known only for exact computation. In addition to these highlighted results, we prove a number of other results in the distributed CONGEST model including an Ω~(n2)\tilde{\Omega}(n^2) lower bound for computing an exact solution to MVC on G2G^2, a conditional hardness result for obtaining a (1+ϵ)(1+\epsilon)-approximation to MVC on G2G^2, and an O(logΔ)O(\log \Delta)-approximation to the MDS problem on G2G^2 in \mbox{poly}\log n rounds.Comment: Appears in PODC 2020. 40 pages, 7 figure

    Finite Automata for the Sub- and Superword Closure of CFLs: Descriptional and Computational Complexity

    Full text link
    We answer two open questions by (Gruber, Holzer, Kutrib, 2009) on the state-complexity of representing sub- or superword closures of context-free grammars (CFGs): (1) We prove a (tight) upper bound of 2O(n)2^{\mathcal{O}(n)} on the size of nondeterministic finite automata (NFAs) representing the subword closure of a CFG of size nn. (2) We present a family of CFGs for which the minimal deterministic finite automata representing their subword closure matches the upper-bound of 22O(n)2^{2^{\mathcal{O}(n)}} following from (1). Furthermore, we prove that the inequivalence problem for NFAs representing sub- or superword-closed languages is only NP-complete as opposed to PSPACE-complete for general NFAs. Finally, we extend our results into an approximation method to attack inequivalence problems for CFGs

    Model Adaptation with Synthetic and Real Data for Semantic Dense Foggy Scene Understanding

    Full text link
    This work addresses the problem of semantic scene understanding under dense fog. Although considerable progress has been made in semantic scene understanding, it is mainly related to clear-weather scenes. Extending recognition methods to adverse weather conditions such as fog is crucial for outdoor applications. In this paper, we propose a novel method, named Curriculum Model Adaptation (CMAda), which gradually adapts a semantic segmentation model from light synthetic fog to dense real fog in multiple steps, using both synthetic and real foggy data. In addition, we present three other main stand-alone contributions: 1) a novel method to add synthetic fog to real, clear-weather scenes using semantic input; 2) a new fog density estimator; 3) the Foggy Zurich dataset comprising 38083808 real foggy images, with pixel-level semantic annotations for 1616 images with dense fog. Our experiments show that 1) our fog simulation slightly outperforms a state-of-the-art competing simulation with respect to the task of semantic foggy scene understanding (SFSU); 2) CMAda improves the performance of state-of-the-art models for SFSU significantly by leveraging unlabeled real foggy data. The datasets and code are publicly available.Comment: final version, ECCV 201

    Experimental Evidence for Quantum Structure in Cognition

    Full text link
    We proof a theorem that shows that a collection of experimental data of membership weights of items with respect to a pair of concepts and its conjunction cannot be modeled within a classical measure theoretic weight structure in case the experimental data contain the effect called overextension. Since the effect of overextension, analogue to the well-known guppy effect for concept combinations, is abundant in all experiments testing weights of items with respect to pairs of concepts and their conjunctions, our theorem constitutes a no-go theorem for classical measure structure for common data of membership weights of items with respect to concepts and their combinations. We put forward a simple geometric criterion that reveals the non classicality of the membership weight structure and use experimentally measured membership weights estimated by subjects in experiments to illustrate our geometrical criterion. The violation of the classical weight structure is similar to the violation of the well-known Bell inequalities studied in quantum mechanics, and hence suggests that the quantum formalism and hence the modeling by quantum membership weights can accomplish what classical membership weights cannot do.Comment: 12 pages, 3 figure

    Classical Logical versus Quantum Conceptual Thought: Examples in Economics, Decision theory and Concept Theory

    Full text link
    Inspired by a quantum mechanical formalism to model concepts and their disjunctions and conjunctions, we put forward in this paper a specific hypothesis. Namely that within human thought two superposed layers can be distinguished: (i) a layer given form by an underlying classical deterministic process, incorporating essentially logical thought and its indeterministic version modeled by classical probability theory; (ii) a layer given form under influence of the totality of the surrounding conceptual landscape, where the different concepts figure as individual entities rather than (logical) combinations of others, with measurable quantities such as 'typicality', 'membership', 'representativeness', 'similarity', 'applicability', 'preference' or 'utility' carrying the influences. We call the process in this second layer 'quantum conceptual thought', which is indeterministic in essence, and contains holistic aspects, but is equally well, although very differently, organized than logical thought. A substantial part of the 'quantum conceptual thought process' can be modeled by quantum mechanical probabilistic and mathematical structures. We consider examples of three specific domains of research where the effects of the presence of quantum conceptual thought and its deviations from classical logical thought have been noticed and studied, i.e. economics, decision theory, and concept theories and which provide experimental evidence for our hypothesis.Comment: 14 page

    End-to-End Learning of Driving Models with Surround-View Cameras and Route Planners

    Full text link
    For human drivers, having rear and side-view mirrors is vital for safe driving. They deliver a more complete view of what is happening around the car. Human drivers also heavily exploit their mental map for navigation. Nonetheless, several methods have been published that learn driving models with only a front-facing camera and without a route planner. This lack of information renders the self-driving task quite intractable. We investigate the problem in a more realistic setting, which consists of a surround-view camera system with eight cameras, a route planner, and a CAN bus reader. In particular, we develop a sensor setup that provides data for a 360-degree view of the area surrounding the vehicle, the driving route to the destination, and low-level driving maneuvers (e.g. steering angle and speed) by human drivers. With such a sensor setup we collect a new driving dataset, covering diverse driving scenarios and varying weather/illumination conditions. Finally, we learn a novel driving model by integrating information from the surround-view cameras and the route planner. Two route planners are exploited: 1) by representing the planned routes on OpenStreetMap as a stack of GPS coordinates, and 2) by rendering the planned routes on TomTom Go Mobile and recording the progression into a video. Our experiments show that: 1) 360-degree surround-view cameras help avoid failures made with a single front-view camera, in particular for city driving and intersection scenarios; and 2) route planners help the driving task significantly, especially for steering angle prediction.Comment: to be published at ECCV 201

    Quantum Experimental Data in Psychology and Economics

    Full text link
    We prove a theorem which shows that a collection of experimental data of probabilistic weights related to decisions with respect to situations and their disjunction cannot be modeled within a classical probabilistic weight structure in case the experimental data contain the effect referred to as the 'disjunction effect' in psychology. We identify different experimental situations in psychology, more specifically in concept theory and in decision theory, and in economics (namely situations where Savage's Sure-Thing Principle is violated) where the disjunction effect appears and we point out the common nature of the effect. We analyze how our theorem constitutes a no-go theorem for classical probabilistic weight structures for common experimental data when the disjunction effect is affecting the values of these data. We put forward a simple geometric criterion that reveals the non classicality of the considered probabilistic weights and we illustrate our geometrical criterion by means of experimentally measured membership weights of items with respect to pairs of concepts and their disjunctions. The violation of the classical probabilistic weight structure is very analogous to the violation of the well-known Bell inequalities studied in quantum mechanics. The no-go theorem we prove in the present article with respect to the collection of experimental data we consider has a status analogous to the well known no-go theorems for hidden variable theories in quantum mechanics with respect to experimental data obtained in quantum laboratories. For this reason our analysis puts forward a strong argument in favor of the validity of using a quantum formalism for modeling the considered psychological experimental data as considered in this paper.Comment: 15 pages, 4 figure
    corecore